Recent Posts

Exercise 2.2

Q.1       Divide the polynomial p(x) by the polynomial g (x) and find the quotient and remainder in each of the following :             (i) p(x)=x33x2+5x3,g(x)=x22            (ii) p(x)=x43x2+4x+5,g(x)=x2+1x
            (iii) p(x)=x45x+6,g(x)=2x2
Sol.      (i) We have, 

7

        Therefore, the quotient is x – 3 and the remainder is 7 x – 9
        (ii) Here, the dividend is already in the standard form and the divisor is also in the standard form.
         We have,
8
         Therefore, the quotient is x2+x3 and the remainder is 8.
        (iii) To carry out the division, we first write divisor in the standard form.
         So, divisor = x2+2
         We have,
22
         Therefore, the quotient is x2+2
         and the remainder is – 5x + 10.
Q.2         Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial :               (i) t23,2t4+3t32t29t12              (ii) x2+3x+1,3x4+5x37x2+2x+2              (iii) x33x+1,x54x3+x2+3x+1Sol.      (i) Let us divide 2t4+3t32t29t12byt23.            We have, 
10
        Since the remainder is zero, therefore, t23 is a factor of 2t4+3t32t29t12.
        (ii) Let us divide 3x4+5x37x2+2x+2byx2+3x+1.
        We get,
18
        Since the remainder is zero, therefore x2+3x+1 is a factor of
                                                               3x4+5x37x2+2x+2
        (iii) Let us divide x54x3+x2+3x+1 by x33x+1
         We get,
19
         Here remainder is 2( 0). Therefore,  x33x+1 is not a factor of
                                                                            x54x3+x2+3x+1.



Q.3      Obtain all the zeroes of 3x4+6x32x210x5 if two of its zeroes are 53and53.Sol.      Since two zeroes are 53and53, so (x53)and(x+53) are the factors of the given polynomial.           Now, (x53)(x+53)=x253             (3x25) is a factor of the given polynomial.            Applying the division algorithm to the given polynomial and 3x25, we have
18
         Therefore, 3x4+6x32x210x5(3x25)(x2+2x+1)
          Now, x2+2x+1 =x2+x+x+1                                     =x(x+1)+1(x+1)
                                   =(x+1)(x+1)
          So, its other zeroes are – 1 and – 1.
          Thus,  all the zeroes of the given fourth degree polynomial are
                   53,53,1and1 . 



Q.4       On dividing x33x2+x+2 by a polynomial g(x) , the quotient and remainder were x – 2 and – 2x + 4 respectively. Find g(x).
Sol.         Since on dividing x33x2+x+2 by a polynomial (x – 2) × g(x), the quotient and remainder were (x – 2) and (– 2x + 4) respectively, therefore,
              Therefore, Quotient × Divisor + Remainder = Dividend
          (x2)×g(x)+(2x+4)  =x33x2+x2
          (x – 2) × g(x) =x33x2+x2+2x4
          g(x)=x33x2+3x2x2                  ... (1)
         Let us divide x33x2+3x2byx2. We get
14
           Therefore, equation (1) gives g (x) =x2x+1

Q.5     Give examples of polynomials p(x), g(x) , q (x) and r (x), which satisfy the division algorithm and            (i) deg p(x) = deg q(x)                      (ii) deg q(x) = deg r (x)                                     (iii) deg r (x) = 0Sol.     There can be several examples for each of (i), (ii) and (iii).            However, one example for each case may be taken as under :         (i) p(x)=2x22x+14,g(x)=2,             q(x)=x2x+7,r(x)=0        (ii)  p(x)=x3+x2+x+1,g(x)=x21 ,             q(x)=x+1,r(x)=2x+2        (iii) p(x)=x3+2x2x+2,             g(x)=x21,q(x)=x+2,r(x)=4
5

√E

Exercise 2.2 Exercise 2.2 Reviewed by FIRDOUS on January 16, 2019 Rating: 5

No comments:

Home Ads

Powered by Blogger.