Recent Posts

Exercise 3.2

Question .1      Solve the following pair of linear equations by the substitution method 

            (i) x + y = 14                                                         x – y = 4
            (ii) s – t = 3                                                           s3+t2=6
            (iii) 3x + y = 3                                                       9x – 3y = 9
            (iv) 0.2x + 0.3y = 1.3                                            0.4x + 0.5y = 2.3
            (v) 2x+3y=0                                             3x8y=0
            (vi) 3x25y3=2                                                x3+y2=136
Sol.       (i) The given system of equations is
              x + y = 14 ...(1)
              and, x – y = 4 ...(2)
              From (1), y = 14 – x
              Substituting y = 14 – x in (2), we get
              x – (14 – x) = 14
              x – 14 + x = 4
              2x = 4 + 14
              2x = 18
              x = 9
              Putting x = 9 in (1), we get
              9 + y = 14
              y = 14 – 9
              y = 5
              Hence, the solution of the given system of equations is
              x = 9, y = 5
             (ii) The given system of equations is
              s – t = 3 ...(1)
              s3+t2=6 ...(2)
              From (1), s = 3 + t
  Substituting s = 3 + t in (2), we get
              3+t3+t2=6
              2(3+t)+3t=36

              6 + 2t + 3t = 36
              5t = 30
              t = 6

              Putting t = 6 in (1), we get
              s – 6 = 3
                s = 3 + 6 = 9

               Hence, the solution of the given system of equations is
               s = 9, t = 6
               (iii) The given system of equations is
                3x – y = 3 ...(1)
                and, 9x – 3y = 9 ...(2)
                From (1), y = 3x – 3
                Substituting y = 3x – 3 in (2), we get
                9x – 3(3x – 3) = 9
                9x – 9x + 9 = 9

                9 = 9
               This statement is true for all values of x. However, we do not get a specific value of x as a solution. So, we cannot obtain a specific value of y . This situation has arisen because both the given equations are the same.
Therefore, Equations (1) and (2) have infinitely many solutions.
                 (iv) The given system of equations is
                 0.2x + 0.3y = 1.3
                  2x + 3y = 13...(1)

                 and, 0.4x + 0.5y = 2.3 
                  4x + 5y = 23 ...(2) 

                 From (2), 5y = 23 – 4x
                  y=234x5

                 Substituting y=234x5 in (1), we get
                 2x+3(234x5)=13
                  10x + 69 – 12x = 65
                  – 2x = – 4
                  x = 2

                 Putting x = 2 in (1), we get
                 2 × 2 + 3y = 13
                  3y = 13 – 4 = 9

                  y=93=3
                 Hence, the solution of the given system of equations is
                 x = 2, y = 3
                 (v) The given system of equations is
                  2x+3y=0 ...(1)
                  and, 3x8y=0 ...(2)
                  From (2), 8y=3x
                  y=3x8

                  Substituting y=3x8 in (1), we get
                  2x+3(3x8)=0
                  2x+3x8=0

                  16x+3x=0
                  4x + 3x = 0
                  7x = 0 
                  x = 0

                  Putting x = 0 in (1), we get
                  0 + 3y = 0
                  y = 0

                  Hence, the solution of the given system of equations is
                  x = 0, y = 0
                  (vi) The given system of equations is
                  3x25y3=2
                  9x – 10y = – 12 ...(1)

                  and, x3+y2=136
                  2x + 3y = 13 ...(2)

                  From (1), 10y = 9x + 12
                  y=9x+1210

                  Substituting y=9x+1210 in (2), we get
                  2x+3(9x+1210)=13
                  20x + 27x + 36 = 130
                  47x = 130 – 36
                  47x = 94

                  x=9447=2
                  Putting x = 2 in (1), we get
                  9 × 2 – 10y = – 12
                  –10y = –12 – 18   
– 10y = – 30
                  y=3010=3
                  Hence, the solution of the given system of equations is
                  x = 2, y = 3


Question.2          Solve 2x + 3y = 11 and 2x – 4y = – 24 and hence find the value of 'm' for which y = mx + 3.Sol.          The given system of equations is                2x + 3y = 11                and, 2x – 4y = – 24                From(1), 3y = 11 – 2x
                 y=112x3
                 Substituting y=112x3 in (2), we get                 2x4(112x3)=24                   6x – 44 + 8x = – 72                  14x = –72 + 44
                  14x = –28
                  x=2814=2                  Putting x = –2 in (1), we get                 2(– 2) + 3y = 11                  – 4 + 3y = 11                  3y = 11 + 4                  3y = 15                  y=153=5                   Putting x = – 2, y = 5 in y = mx + 3, we get                  5 = m(–2) + 3
                  –2m = 5 – 3
                  – 2m = 2                  m = – 1



Question.3      Form the pair of linear equations for the following problems and find their solution by substitution method.(i) The difference between two numbers is 26 and one number is three times the other. Find them.
Sol.      (i) Let the numbers be x and y (x > y). Then,            x – y = 26            and, x = 3y            From (2), y=x3 in (1), we get            xx3=26
            3xx=78
            2x = 78             x = 39            Putting x = 39 in (2), we get            39 = 3y            y=393=13              Hence, the required numbers are 39 and 13.

(ii) The larger of two supplementary angles exceeds the smaller by 18 degrees. find them.
              (ii) Let the angles be x° and y°(x > y). Then,
              x + y = 180
              and, x = y + 18
              Substituting x = y + 18 in (1), we get
              y + 18 + y = 180
              2y = 180 – 18

              2y = 162
              y=1622=81

              Putting y = 81 in (2), we get
              x = 81 + 18 = 99
              Thus, the angles are 99° and 81°.

(iii) The coach of a cricket team buys 7 bats and 6 balls for Rs 3800. Later, she buys 3 bats and 5 balls for Rs 1750. Find the cost of each bat and each ball.
              (iii) Let the cost of one bat and one ball be Rs. x and Rs. y respectively. Then,
               7x + 6y = 3800 .....(1)
               and, 3x + 5y = 1750 ...(2)
               From (2), 5y = 1750 – 3x 
                y=17503x5

               Substituting y=17503x5 in (1), we get
               7x+6(17503x5)=3800
                35x + 10500 – 18x = 19000
                17x = 19000 – 10500
                17x = 8500
                x=850017=500
               Putting x = 500 in (2), we get
               3(500) + 5y = 1750
                5y = 1750 – 1500
                5y = 250
                y=2505=50
               Hence, the cost of one bat is Rs. 500 and the cost of one ball is Rs 50.

               
(iv) A fraction becomes 911 , if 2 is added to both the numerator and the denominator. If 3 is added to both the numerator and the denominator, it become 56 . Find the fraction.
                (v) Let the fraction be xy .
                Then, according to the given conditions, we have
                x+2y+2=911 and x+3y+3=56
                11x + 22 = 9y + 18 and 6x + 18 = 5y + 15
                11x – 9y = – 4 ...(1)
                and, 6x – 5y = – 3....(2)
                From (2), 5y = 6x + 3
                y=6x+35
                Substituting y=6x+35 in (1), we get
                11x9(6x+35)=4
                55x – 54x – 27 = –20

                x = – 20 + 27
                x = 7

                Putting x = 7 in (1), we get
                11(7) – 9y = – 4
                – 9y = – 4 – 77

                –9y = – 81
                y=819=9
                 Hence, the given fraction is 79 .
(v) Five years hence, the age of Nuri will three times that of his son. Five years ago,Nuri's age was seven times that of his son. What are the present ages?
                 (v) Let the present age of Nurui  be x years and the present age of his son be y years.
                 Five years hence, Nuri's age = (x + 5) years
                                                Son's age = (y + 5) years
                 Five years ago, Nuri's age = (y – 5) years 
                 Son's age = (y – 5) years
                 As per question, we get
                 (x + 5) = 3(y + 5)
                  x + 5 = 3y + 15
                  x – 3y =10
                  x – 3y = 15 – 5
                 and, (x – 5) = 7(y – 5)
                  x – 5 = 7y – 35
                  x – 7y = – 30
                  x – 7y = – 35 + 5
                 From (1), x = 3y + 10
                 Substituting x = 3y +10 in (2), we get
                 3y + 10 – 7y = – 30

                  – 4y = – 30 – 10
                  – 4y = – 40
                  y = 10
                 Putting y = 10 in (1),we get
                 x – 3 × 10 = 10
                  x = 10 + 30 = 40
                 Hence, present age of Nuri is 40 years and that his son is 10 years


Exercise 3.2 Exercise 3.2 Reviewed by FIRDOUS on January 16, 2019 Rating: 5

No comments:

Home Ads

Powered by Blogger.