Recent Posts

Exercise 3.5

Q.1       Solve the following pairs of equations by reducing them to a pair of linear equations :
(i) 12x+13y=2

13x+12y=136
(ii) 2x+3y=2
4x9y=1
(iii) 4x+3y=14  
3x4y=23
(iv) 5x1+1y2=2
       
6x13y2=1
(v) 7x2yxy=5 8x+7yxy=15
(vi) 6x + 3y = 6xy
2x + 4y = 5xy
(vii) 10x+y+2xy=4
15x+y5xy=2
(viii) 13x+y+13xy=34
12(3x+y)12(3xy)=18







Sol.       (i) Taking 1x=u and 1y=v . The given system of equations become
              12u+13v=2
             
3u + 2v = 12 ...(1)

              13u+12v=136
             
2u + 3v = 13...(2) 

              Multiplying (1) by 3 and (2), we have
              9u + 6v = 36 ...(3)
              and, 4u + 6v = 26 ...(4) 
              Subtracting (4) from (3), we get
              5u = 10
              u = 2
              Putting u = 2 in (3), we get
             18 + 6v = 36
              6v = 18
              v = 3
             Now, u = 2
              1x=2
              x=12
             and, v = 3
              1y=3
              y=13
             Hence, the solution is x = 12 , y=13 .


            (ii) The given system of equations is
            2x+3y=2 and 4x9y=1
            Putting u=1x and v=1y .Then , the given equations become
            2u + 3v = 2 ...(1)
            and, 4u – 9v = – 1 ...(2)
            Multiplying (1) by 3, we get
            6u + 9v = 6...(3)
            Adding (2) and (3), we get
            10u = 5
            u=510=12
             Putting u=12 in (1), we get
             2×12+3v=2
              3v = 1
              v=13
             Now, u=12
              1x=12
              x = 2
              x = 4

             and, v=13
              1y=13
              y = 3
              y = 9
             Hence, the solution is x = 4, y = 9.


            (iii) The given system of equations is  

            4x+3y=14 ...(1) 
            and, 3x4y=23 ...(2)
            Multiplying (1) by 4 and (2) by 3, we get
            16x+12y=56 ...(3)
            and, 9x12y=69 ...(4)
            Adding (3) and (4), we get
            25x=125
            x=25125=15
            Putting x=15 in (1), we get
            4×5+3y=14
            3y = 14 – 20
            3y = – 6
            y = – 2
            Hence, the solution is x=15 , y = – 2.



            (iv) Let u=1x1,v=1y2 . Then, the given system of equations becomes
            5u + v = 2 ...(1)
            and, 6u – 3v = 1 ...(2)
            Multiplying (1) by 3, we get
            15u + 3v = 6 ...(3)
            Adding (2) and (3), we get
            21u = 7
            u=13
            Putting u=13 in (1), we get
            53+v=2
            v=253=653=13
            Now, u=13
            1x1=13
            x – 1 = 3
            x = 4
             v=13
              1y2=13
              y – 2 = 3
              y = 5
            Hence, the solution is x = 4, y = 5.


           (v) The given system of equations is
           7x2yxy=5
            7y2x=5
           and, 8x+7yxy=15
            8y+7x=15
            Let u = 1x , v = 1y . Then, the above equations become
            7 – 2u = 5 ...(1)
            and, 8v + 7u = 15 ...(2)
            Multiplying (1) by 7 and (2), we get
            49v – 14u = 35 ...(3)
             and, 16v + 14u = 30
             Adding (3) and (4), we get
             65v = 65
              v = 1
             Putting v = 1 in (1), we get
             7 – 2u = 5
              – 2u = – 2
              u = 1
             Now, u = 1
              1x=1
              x = 1
              and, v = 1
              1y=1
              y = 1
              Hence, the solution is x = 1, y = 1.


              (vi) The given system of equations is 6x + 3y = 6xy and 2x + 4y = 5xy, where x and y are non -zero.
              Since x0,y0, , we have xy 0.
              On dividing each one of the given equations by xy we get
              3x+6y=6 and 4x+2y=5
              Taking 1x=u and 1y=v , the above equations become
               3u + 6v = 6...(1) 
               and, 4u + 2v = 5...(2) 
               Multiplying (2) by 3, we get
               12u + 6v = 15 ...(3)
               Subtracting (1) from (3), we get
               9u = 15 – 6 = 9
                u = 1
               Putting u = 1 in (1), we get
               3×1 + 6v = 6
                6v = 6 – 3 = 3
                v=12
                Now, u = 1
                1x=1
                x = 1
                and, v=12
                1y=12
                y = 2
                Hence, the given system of equations has one solution x = 1, y = 2.


                (vii) The given system of equations is
                10x+y+2xy=4
                15x+y5xy=2
                Putting u=1x+y and v=1xy . Then, the given equations become
                10u +2v = 4
                5u + v = 2 ...(1)
                and, 15u – 5v = – 2...(2)
                Multiplying (1) by 5, we get
                25u + 5v = 10 ...(3)
                Adding (2) and (3), we get
                40u = 8
                u=15
                Putting u=15 in (1), we get
                5(15)+v=2
                v = 2 – 1 = 1
                 Now, u=15
                x + y = 5 ...(4)
                v = 1
                  1xy=1
                x – y = 1
                Adding (4) and (5), we get
                2x = 6
                x = 3
                When x = 3, then from (4), we get
                 3 + y = 5
                  y = 5 – 3 = 2
                 Hence, the given system of equations has one solution
                 x = 3, y = 2


               (viii) Taking u=13x+y and v=13xy . The give system of equations becomes
                u + v =34 ...(1)
                12u12v=18
                u – v = 14 ...(2)
                Adding (1) and (2), we get
                 2u = 3414
                  2u=24=12
                  u=14
                 Putting u=14 in (1), we get
                 14+v=34
                  v=3414=24=12
                 Now, u=14
                  13x+y=14
                  3x + y = 4...(3) 
                 and, v=12                   3x – y = 2...(4)
                  13xy=12
                 Adding (3) and (4), we get
                 Putting x = 1 in (3), we get
                 3x + y = 4 
                  y = 4 – 3 = 1
                 Hence, the solution is x = 1, y = 1.
Exercise 3.5 Exercise 3.5 Reviewed by FIRDOUS on January 17, 2019 Rating: 5

No comments:

Home Ads

Powered by Blogger.