Recent Posts

Exercise 4.3

Q.1      Find the roots of the following quadratic equations, if they exist by the method of completing the square:            (i) 2x27x+3=0             (ii) 2x2+x4=0             (iii) 4x2+43x+3=0             (iv) 2x2+x+4=0 Sol.      (i) The equation 2x27x+3=0 is the same as x272x+32=0
            Now, x272x+32
            =(x74)2(74)2+32
            =(x74)24916+32
            =(x74)22516
            Therefore, 2x27x+3=0
            (x74)22516=0
            (x74)2=2516
            x74=±54
            x=74±54
            x=74+54=124=3
            x=7454=24=12
            Therefore, The roots of the given equation are 3 and 12 .
          
  (ii) We have, 2x2+x4=0
            x2+x22=0             (x+14)2(14)22=0             (x+14)21162=0             (x+14)23316=0             (x+14)2=3316             x+14=±334             x=14±334             x=1+334             x=1334             Therefore, The roots of the given equation are 1334 and 1+334            (iii) We have, 4x2+43x+3=0             (2x)2+2×(2x)×3+(3)2(3)2+3=0             (2x+3)23+3=0             (2x+3)2=0             x=32             x=32             Therefore, The roots of the given equation are 32 and 32 .


           
(iv) We have, 2x2+x+4=0
            x2+12x+2=0             (x+14)2116+2=0             (x+14)2+3116=0             (x+14)2=3116<0             But (x+14)2 cannot be negative for any real value of x. So, there is no real value of x satisfying the given equation. Therefore, the given equation has no real roots.



Q.2      Find the roots of the quadratic equations given in Q.1 above by applying the quadratic formula.Sol.      (i) The given equation is 2x27x+3=0
            Here a = 2, b = – 7 and c = 3.            Therefore, D=b24ac=(7)24×2×3 = 4924=25>0             So, the given equation has real roots given by            x=b±D2a             =(7)±252×2             =7±54             =124or24=3or12
            (ii) The given equation is 2x2+x4=0
            Here, a = 2, b = 1 and c = – 4            Therefore, D=b24ac=(1)24×2×4=1+32=33>0             So, the given equation has real roots given by            x=b±D2a=1±332×2  =1±334
            (iii) The given equation is 4x2+43x+3=0
            Here a = 4, b=43andc=3
            Therefore, D=b24ac=(43)24×4×3=4848=0
            So, the given equation has real equal roots given by            x=b±D2a=b2a  =432×4=32             (iv) The given equation is 2x2+x+4=0
            Here, a = 2, b = 1 and c = 4            Therefore, D=b24ac=(1)24×2×4=132=31<0             So, the given equation has no real roots.            I prefer to use quadratic formula method as it is a straight forward method.

Q.3      Find the roots of the following equations :            (i) x1x=3,x0             (ii) 1x+41x7=1130,x4,7



Sol.       (i) The given equation is x1x=3,x0
              x23x1=0
             Here , a = 1, b = – 3 and c = – 1             Therefore, D=b24ac=(3)24(1)(1)=9+4=13>0              So, the given equation has real roots given by             x=b±D2a=(3)±132×1  =3±132
             (ii) The given equation is 1x+41x7=1130,x4,7
              (x7)(x+4)(x+4)(x7)=1130
             
x7x4(x+4)(x7)=1130
              11(x+4)(x7)=1130
             
1x27x+4x28=130
             
1x23x28=130
             
30=x23x28
              x23x+2=0
           
x22xx+2=0
             
(x1)(x2)=0
             
x(x2)1(x2)=0
              x=1or2
             Thus x = 1 and x = 2 are the roots of the given equation.

Q.4      The sum of the reciprocals of Rehman's ages, (in years) 3 years ago and 5 years from now is 13 . Find his present age.Sol.      Let Rehman's present age be x - years.            As per question, we have            1x3+1x+5=13             3(x+5)+3(x3)=(x3)(x+5)             3x+15+3x9=x2+2x15             x24x21=0             x27x+3x21=0
           
  (x7)(x+3)=0
            x(x7)+3(x7)=0
            (x+3)(x7)=0
            x=7or3             Therefore, x=7 [Since, age can never be negative]            Thus, Rehman's present age is 7 years.




Q.5      The diagonal of a rectangular field is 60 metres more than the shorter side. If the longer side is 30 metres more than the shorter side, find the sides of the field.Sol.      Let in the rectangular field BC = x metres. Then AC = (x + 60) and AB = (x + 30) metres. By Pythagoras Theorem, we have
13           AC2=BC2+AB2
           
(x+60)2=x2+(x+30)2
           
x2+120x+3600=x2+x2+60x+900
           
x260x2700=0
           
x290x+30x2700=0
           
x(x90)+30(x900)=0
            (x+30)(x90)=0            
x=30orx=90
           
x=90 [Since side of a rectangle can never be negative]
           Hence, the sides of the field are 120 m and 90 m.

Q.6      The difference of squares of two numbers is 180. The square of the smaller number is 8 times the larger number. Find the two numbers.
Sol.    Let the larger number be x. Then ,
          Square of the smaller number = 8x
          Also , square of the larger number =
x2
          It is given that the difference of the squares of the number is 180
          Therefore, x28x=180          
x28x180=0
         
x218x+10x180=0
         
x(x18)+10(x18)=0
         
(x18)(x+10)=0
         
x18=0orx+10=0
         
x=18orx=10
          Case 1 : When x = 18. In this case, we have
          Square of the smaller number = 8x = 8 × 18 = 144
          Therefore, Smaller number
=±12
          Thus, the number are 18, 12 or 18, – 12.          Case 2 : When x = – 10
          In this case, we have
          Square of the smaller number = 8x = 8 × – 10 = – 80
          But , square of a number is always positive.
          Therefore, x = – 10 is not possible.
          Hence, the numbers are 18, 12 or 18 , – 12.

Q.7      A train travels 360 km at a uniform speed. If the speed had been 5 km/h more, it would have taken 1 hour less for the same journey. Find the speed of the train.Sol.       Let x km/hr be the uniform speed of the train.
            Then time taken to cover
360km=360xhours .
            Time taken to cover 360 km when the speed is increased by
5km/hr=360x+5hours.
            It is given that the time to cover 360 km is reduced by 1 hour.            Therefore,
360x360x+5=1
           
360(x+5)360x=x(x+5)
           
360x+1800360x=x2+5x
           
x2+5x1800=0
           
x2+45x40x1800=0
           
x(x+45)40(x+45)=0
           
(x40)(x+45)=0
            x40=0orx+45=0            
x=40orx=45
            But x cannot be negative. Therefore, x = 40.
            Hence, the original speed of the train is 40 km/hr.


Q.8     Two water taps together can fill a tank in 938 hours. The tap of larger diameter takes 10 hours less than the smaller one to fill the tank separately. Find the time in which each tap can separately fill the tank.Sol.        Let the smaller tap takes x hours to fill the tank. So, the larger tap will take (x – 10) hours to fill the tank.              Therefore, Portion of the tank filled by the larger tap in one hours =1x10               Portion of the tank filled by the larger tap 938hours               i.e., 758hours=1x10×758              Similarly, portion of the tank filld by the smaller tap in 758hours=1x×758              Since it is given that the tank is filled in 758hours              Therefore, 758(x10)+758x=1               1x10+1x=875               x+x10x(x10)=875               75(2x10)=8x(x10)               150x750=8x280x               8x2230x+750=0               4x2115x+375=0               4x2100x15x+375=0               4x(x25)15(x25)=0               (x25)(4x15)=0               x25=0or4x15=0               x=25or154              Therefore, x=25asx=154 is inadmissible             Hence, the larger tap fills the tank in 15 hours and the smaller tap takes 25 hours to fill the tank.



Q.9     Sum of the areas of two squares is 468m2 . If the difference of their perimeters is 24 m, find the sides of the two squares.
Sol.       Let the sides of the squares be x and y metres (x > y).             According to question :
             
x2+y2=468 ... (1)
             and
4x4y=24
             
xy=6 ... (2)
             Putting x = y + 6 in (1), we get
(y+6)2+y2=468
           
y2+12y+36+y2=468
            2y2+12y+36468=0
            2y2+12y432=0
           
y2+6y216=0
           
y2+18y12y216=0
           
y(y+18)12(y+18)=0
           
(y+18)(y12)=0
           
y=18ory=12
            But y cannot be negative. Therefore, y = 12
            Therefore, x = y + 6 = 12 + 6 = 18
            Therefore, The sides of the squares are 18 m and 12 m.
Exercise 4.3 Exercise 4.3 Reviewed by FIRDOUS on January 17, 2019 Rating: 5

No comments:

Home Ads

Powered by Blogger.