Recent Posts

Exercise 4.4

Q.1      Find the nature of the roots of the following quadratic equations. If the real roots exist, find them :            (i) 2x23x+5=0             (ii) 3x243x+4=0             (iii) 2x26x+3=0 Sol.       (i) The given equation is 2x23x+5=0
             Here , a = 2, b = – 3 and c = 5
             Therefore, D=b24ac=(3)24×2×5=940=31<0
             So, the given equation has no real roots.

            
(ii) The given equation is 3x243x+4=0
            Here a = 3, b=43andc=4             Therefore, D=b24ac=(43)24×3×4=4848=0             So, the given equation has real equal roots, given by            x=b±D2a=(43)±02×2=3 .


            (iii) The given equation is 2x26x+3=0
            Here, a = 2, b = – 6 and c = 3            Therefore, D=b24ac=(6)24×2×3=3624=12>0             So, the given equation has real roots , given by            x=b±D2a=(6)±122×2             =6±234=3±32

Q.2      Find the values of k for each of the following quadratic equations, so that they have two equal roots.            (i) 2x2+kx+3=0             (ii) kx(x2)+6=0 Sol.      (i) The given equation is 2x2+kx+3=0             Here, a = 2, b = k and c = 3            Therefore, D=b24ac=k24×2×3=k224             The given equation will have real and equal roots, if             D = 0 k224=0 k=±24=±26             (ii) The given equation is kx (x – 2) + 6 = 0            kx22kx+6=0             Here a = k , b = – 2k and c = 6            Therefore, D=b24ac=(2k)24×k×6=4k224k             The given equation will have real and equal roots, if D = 0            4k224k=0 4k(k6)=0             k=0ork=6

Q.3      Is it possible to design a rectangular mango grove whose length is twice its breadth, and the area is 800 m2 ? If so, find its length and breadth.Sol.      Let 2x be the length and x be the breadth of a rectangular mango grove.            Area = (2x) (x) = 800 [Given]            x2=400             x=20 [Since cannot  be negative]            The value of x is real so design of grove is possible             Its length = 40 m and breadth = 20 m.

Q.4      Is the following situation possible ? If so, determine their present ages. The sum of the ages of two friend is 20 years. Four year ago, the porudct of their ages in years was 48.Sol.      Let age of one of the friends = x years            Then, age of the other friend = 20 – x Four years ago,            Age of one of the friend = (x – 4) years            and age of the other friend = (20 – x – 4) years            = (16 – x) years            According to condition :            (x4)(16x)=48             16x264+x=48             x220+112=0             Here a = 1, b = – 20 and c = 112            Therefore, D=b24ac=(20)24×1×112             =400448=48<0             So, the given equation has no real roots.            Thus , the given situation is not possible.

Q.5      Is it possible to design a rectangular park of perimeter 80 m and area 400 m2 ? If so, find its length and breadth.Sol.      Let length be x metres and breadth be y metres.            Therefore, Perimeter = 80 m            2(x+y)=80             x+y=40 ...(1)            Also, Area=400m2             xy=400             x(40x)=400 [Using (1)]            40xx2=400             x240x+400=0             Here a = 1, b = – 40 and c = 400            Therefore,D=b24ac            =(40)24×1×400            =16001600=0            So, the given equation has equal real roots.           Therefore, Its length and breadth is given by           x240x+400=0             (x20)2=0             x=20,20            Therefore, Length = 20 m           Breadth = 20 m           Therefore, Design is possible.
Exercise 4.4 Exercise 4.4 Reviewed by FIRDOUS on January 17, 2019 Rating: 5

No comments:

Home Ads

Powered by Blogger.